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Spatial Analyses of Birth and 
Death Data

Examples:
1. Drug Poisoning Death Rates in the U.S., 
2002-2013

– Two-stage hierarchical generalized linear 
models

2. Teen Birth Rates in the U.S., 2003-2012
– Hierarchical Bayesian space-time interaction 

models



First Example

Drug Poisoning Mortality, 2002-2013



Drug Poisoning Mortality, 2002-2013

BACKGROUND

• Death rates associated with drug poisoning have doubled 
since 2000, to ~ 14 per 100,000 in 2013
– More deaths due to drug poisoning than motor vehicle crashes

– Drug overdoses are a major public health concern

• Death rates highest in West Virginia (32), Kentucky (24), New 
Mexico (23), Rhode Island (22) and Utah (22)

• Interest in county-level variation:
– Where are death rates due to drug poisoning highest or lowest?

– Where have we seen larger or smaller increases over time?
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RATIONALE FOR SMOOTHING

• Death rates with data suppressed for counties with < 20 deaths in 2009

• ~ 87% of counties suppressed!

• Rare outcomes  cannot look at sub-state variation using direct 
estimates

Age-Adjusted Death 
Rates from Drug 

Poisoning (per 100,000)



RATIONALE FOR SMOOTHING (continued)

• Rates are unstable for counties with small populations

• Could combine years, but may mask temporal trends

Direct Estimates of Age-Adjusted Death Rates from Drug Poisoning (per 100,000) 
vs. County Population Size



AN EXAMPLE OF UNSTABLE RATES…

• Solid sand-colored line is a large city, other 4 counties are small 
• Death rates fluctuate from 0 to 200 per 100,000 year-to-year

Direct Estimates of Age-Adjusted Death Rates from Drug Poisoning (per 100,000) 



DATA AND ANALYSES

• yit = Age-adjusted death rate (AADR) from 

drug poisoning for county i at time t
– from National Vital Statistics Multiple Cause of Death 

Files, 2002-2013

• yit ~ highly zero-inflated, right-skewed 

distribution
– Use two-stage models 

» Stage 1: model probability of observing a death

» Stage 2: model death rate, given death was recorded



TWO STAGE MODELS

Stage 1:     logit(yit=0) = 
(1)

+ Ai
(1)

+ Bt
(1)

+ Xi‘
(1)

Stage 2: log(yit|yit>0) = 
(2)

+ Ai
(2)

+ Bt
(2)

+ Xi‘
(2)

 = intercept

Ai = county-level random effect

Bt = fixed effects for year

Xi‘= vector of covariates and corresponding parameters, 
– urban/rural classification 

– socio-demographic characteristics at the county-level

– economic characteristics at the county-level



SMOOTHED COUNTY-LEVEL ESTIMATES

• Models run in Stata using GLAAMM (generalized 
linear latent and mixed models)

• Empirical Bayes predictions

E(AADR) = [1-Pr(yit=0)]*e
ŷit

• AADRs were mapped to examine spatiotemporal 
patterns

– Hot and cold spots (Getis Ord Gi*)

• Clusters of counties with high/low AADRs



RESULTS: Age-adjusted death rates (per 100,000) due 
to drug poisoning - 2002



RESULTS: Age-adjusted death rates (per 100,000) due 
to drug poisoning - 2013



RESULTS: Hot and Cold Spots - 2002



RESULTS: Hot and Cold Spots - 2013



CONCLUSIONS
• Looking at spatiotemporal patterns can inform 

efforts to address drug poisoning mortality 
– Can help point to what might be driving drug 

poisoning mortality higher or lower in specific regions

• Patterns emerge that would have been missed 
using state estimates 
– Hot or cold spots that cross state boundaries 

• Appalachia, South West, Gulf coast

– Significant sub-state variation 
• Mississippi, Montana, Virginia contain both hot and cold 

spots



Second Example

Teen Birth Rates in the U.S., 2003-2012



Teen Birth Rates in the U.S., 2003-2012

BACKGROUND

• In 2014, there were 24.2 births for every 1,000 adolescent 
females (15-19 years)

• Reducing teen pregnancy rates is a CDC Winnable Battle

• Large-scale impact on health

• Established preventive measures

• Teen birth rates vary by state, as do trends over time

• Spatiotemporal variation at the sub-state level has not 
yet been explored



RATIONALE FOR SMOOTHING: Teen Birth Rates

• Observed county-level teen birth rates in 2012 

• Suppressing counties with < 20 births (~36% counties)



RATIONALE FOR SMOOTHING (continued)

• Rates are unstable for counties with small populations (0 to 500 per 1,000)

• Could combine years, but that may mask temporal trends



DATA AND ANALYSES

yit = # births to women 15-19 years of age in county i at time t

– National Vital Statistics Birth Data Files from 2003-2012

nit = # women between 15-19 years in county i at time t 

– bridged-race post-censal population estimates

yit ~ Binomial(nit , pit), where,

pit = the probabilities of teen birth for county i at time t

Xi‘ = set of covariates related to urban/rural designation, socio-

demographic and economic characteristics

– Area Resource File, NCHS urban/rural classification



Covariates - Poverty



Covariates - Education



Covariates – Racial/Ethnic Distribution



HIERARCHICAL BAYESIAN MODELS

General space-time structure for modeling pit:

logit(pit) =  + Ai + Bt + Cit + Xi‘
 = intercept 

Ai = spatial effect

Bt = temporal effect

Cit = space-time interaction

Xi‘ = vector of covariates and corresponding parameters, 

Models run in WinBUGS



MAPPING SMOOTHED ESTIMATES

• Posterior teen birth rates (1000*p̂̂it) mapped to 
examine spatiotemporal patterns:

– Exceedance probabilities

• Probability that counties exceed a specified 
threshold, c

– c = 36 to reflect the mean county-level 
TBR in 2012

– Hot and cold spots (Getis Ord Gi*)

• Clusters of counties with high or low rates



RESULTS

• From 2003-2012, teen birth rates: 
declined for ~80% of counties 

no change for ~19% of counties

increased for < 1% of counties

• Comparisons to direct estimates at the state 
level were within 2% 
– Differences between model-based and direct 

estimates were larger for sparsely populated 
states



MODEL DIAGNOSTICS (Teen Birth Rates): 
Comparison to state estimates

State Population

  500k residents

 < 500k residents



Smoothed teen birth rates (per 1,000) - 2003



Smoothed teen birth rates (per 1,000) - 2012



Exceedance Probabilities - 2003



Exceedance Probabilities - 2012



Hot and Cold Spots - 2012



Trends by Urban/Rural Designation, Teen Birth Rates 
2003-2012



CONCLUSIONS

• Findings highlight counties where teen birth rates are relatively 

higher or lower

• How trends over time vary geographically

• Patterns emerge that we would have missed using state 

estimates 

• For example, the hot spot along the Mississippi River crosses state 

boundaries

• Examination of spatiotemporal patterns may inform efforts to 

further reduce birth rates to adolescents in the U.S.

• Can look at where teen birth rates are higher than a given ‘target’ 



SOME CONSIDERATIONS

• Strengths and opportunities:

– Can see and examine variation across the U.S.

– Pick up on important patterns that might be 
masked by state estimates or other groupings 
(urban/rural)

– Provide information relevant to public health 
efforts at the state or local level

– Shed light on risk/protective factors associated 
with population health outcomes



SOME CONSIDERATIONS

• Limitations and challenges:

– Model-based estimates might smooth away 
important effects (either in space or time)

– Some analyses are VERY computer intensive

• 6+ weeks running on a 32 GB machine

– Might not have the level of geography we want

• Is county the appropriate unit of geography?

– Data are typically restricted-use

• Implications for access, confidentiality



QUESTIONS?

Email: LRossen@cdc.gov

mailto:LRossen@cdc.gov


EXTRA SLIDES



MODEL DIAGNOSTICS (Drug Poisoning): 
(Yobs –Ypred)2 vs. Population Size



MODEL DIAGNOSTICS (Teen Birth): Effects of shrinkage
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